JUC-守护线程

概念区别

用户线程:平常创建的普通线程

守护线程:服务于用户线程,只要其它非守护线程运行结束了,即使守护线程代码没有执行完,也会强制结束。守护进程是脱离于终端并且在后台运行的进程,脱离终端是为了避免在执行的过程中的信息在终端上显示

用法

public final void setDaemon(boolean on):如果是 true ,将此线程标记为守护线程

线程启动前调用此方法:

1
2
3
4
5
6
7
8
9
Thread t = new Thread() {
@Override
public void run() {
System.out.println("running");
}
};
// 设置该线程为守护线程
t.setDaemon(true);
t.start();

说明:当运行的线程都是守护线程,Java 虚拟机将退出,因为普通线程执行完后,JVM 是守护线程,不会继续运行下去

常见的守护线程:

  • 垃圾回收器线程就是一种守护线程
  • Tomcat 中的 Acceptor 和 Poller 线程都是守护线程,所以 Tomcat 接收到 shutdown 命令后,不会等待它们处理完当前请求

JUC-Callable

https://blog.csdn.net/bingju328/article/details/125629708

Callable

实现 Callable 接口:

  1. 定义一个线程任务类实现 Callable 接口,申明线程执行的结果类型
  2. 重写线程任务类的 call 方法,这个方法可以直接返回执行的结果
  3. 创建一个 Callable 的线程任务对象
  4. 把 Callable 的线程任务对象包装成一个未来任务对象
  5. 把未来任务对象包装成线程对象
  6. 调用线程的 start() 方法启动线程

public FutureTask(Callable<V> callable):未来任务对象,在线程执行完后得到线程的执行结果

  • FutureTask 就是 Runnable 对象,因为 Thread 类只能执行 Runnable 实例的任务对象,所以把 Callable 包装成未来任务对象
  • 线程池部分详解了 FutureTask 的源码

public V get():同步等待 task 执行完毕的结果,如果在线程中获取另一个线程执行结果,会阻塞等待,用于线程同步

  • get() 线程会阻塞等待任务执行完成
  • run() 执行完后会把结果设置到 FutureTask 的一个成员变量,get() 线程可以获取到该变量的值

优缺点:

  • 优点:同 Runnable,并且能得到线程执行的结果
  • 缺点:编码复杂
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class ThreadDemo {
public static void main(String[] args) {
Callable call = new MyCallable();
FutureTask<String> task = new FutureTask<>(call);
Thread t = new Thread(task);
t.start();
try {
String s = task.get(); // 获取call方法返回的结果(正常/异常结果)
System.out.println(s);
} catch (Exception e) {
e.printStackTrace();
}
}

public class MyCallable implements Callable<String> {
@Override//重写线程任务类方法
public String call() throws Exception {
return Thread.currentThread().getName() + "->" + "Hello World";
}
}

JUC-Thread和Runnable

https://cloud.tencent.com/developer/article/1136459

Thread

Thread 创建线程方式:创建线程类,匿名内部类方式

  • start() 方法底层其实是给 CPU 注册当前线程,并且触发 run() 方法执行
  • 线程的启动必须调用 start() 方法,如果线程直接调用 run() 方法,相当于变成了普通类的执行,此时主线程将只有执行该线程
  • 建议线程先创建子线程,主线程的任务放在之后,否则主线程(main)永远是先执行完

Thread 构造器:

  • public Thread()
  • public Thread(String name)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class ThreadDemo {
public static void main(String[] args) {
Thread t = new MyThread();
t.start();
for(int i = 0 ; i < 100 ; i++ ){
System.out.println("main线程" + i)
}
// main线程输出放在上面 就变成有先后顺序了,因为是 main 线程驱动的子线程运行
}
}
class MyThread extends Thread {
@Override
public void run() {
for(int i = 0 ; i < 100 ; i++ ) {
System.out.println("子线程输出:"+i)
}
}
}

继承 Thread 类的优缺点:

  • 优点:编码简单
  • 缺点:线程类已经继承了 Thread 类无法继承其他类了,功能不能通过继承拓展(单继承的局限性)

Runnable

Runnable 创建线程方式:创建线程类,匿名内部类方式

Thread 的构造器:

  • public Thread(Runnable target)
  • public Thread(Runnable target, String name)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class ThreadDemo {
public static void main(String[] args) {
Runnable target = new MyRunnable();
Thread t1 = new Thread(target,"1号线程");
t1.start();
Thread t2 = new Thread(target);//Thread-0
}
}

public class MyRunnable implements Runnable{
@Override
public void run() {
for(int i = 0 ; i < 10 ; i++ ){
System.out.println(Thread.currentThread().getName() + "->" + i);
}
}
}

Thread 类本身也是实现了 Runnable 接口,Thread 类中持有 Runnable 的属性,执行线程 run 方法底层是调用 Runnable#run:

1
2
3
4
5
6
7
8
9
10
public class Thread implements Runnable {
private Runnable target;

public void run() {
if (target != null) {
// 底层调用的是 Runnable 的 run 方法
target.run();
}
}
}

Runnable 方式的优缺点:

  • 缺点:代码复杂一点。

  • 优点:

    1. 线程任务类只是实现了 Runnable 接口,可以继续继承其他类,避免了单继承的局限性

    2. 同一个线程任务对象可以被包装成多个线程对象

    3. 适合多个多个线程去共享同一个资源

    4. 实现解耦操作,线程任务代码可以被多个线程共享,线程任务代码和线程独立

    5. 更容易与线程池等高级API配合,可以放入实现 Runnable 或 Callable 线程任务对象